Lignocellulosic feedstocks: research progress and challenges in optimizing biomass quality and yield

نویسندگان

  • Maurice Bosch
  • Samuel P. Hazen
چکیده

DEDICATED ENERGY CROPS AND MODELS Lignocellulosic biomass derived from energy crops and agricultural residues is a promising renewable source for the production of transportation fuels and bio-based materials. Plants exhibiting C4 photosynthesis are amongst the most promising dedicated energy crops as they possess tremendous intrinsic efficiency in converting solar energy to biomass. Van der Weijde et al. (2013) provide an excellent overview of the potential of five C4 grasses from the Panicoideae clade (maize, Miscanthus, sorghum, sugarcane, and switchgrass) as lignocellulosic feedstock for the production of biofuels. The authors discuss yield potential, biomass quality and genetic improvement of dual-purpose food and energy cultivars and dedicated energy cultivars through plant breeding and also highlight several research needs. Perennial growth habit provides a number of environmental advantages over annuals as bioenergy crops, including the requirement of less fertilizer, reduced soil erosion, and even the potential for soil carbon sequestration. Schwartz and Amasino (2013) review the importance of the ability of perennial crops to recycle nitrogen, reducing the need for energy intensive N fertilizer, and the subsequent production of potent NOx greenhouse gases. An interesting focus is on the importance of photoperiodic flowering and dormancy in switchgrass and the relevance of these traits to N recycling and genetic variation that contributes to these dynamics. Wang et al. (2013a) review carbon partitioning in sugarcane, which has a source-sink system that creates high concentrations of easily extracted and economically valuable stem sucrose. Nonetheless, the majority of carbohydrate in sugarcane is lignocellulose. A detailed understanding of the molecular, and physiological processes underlying the partitioning of carbon assimilates will provide targets to manipulate the balance between sucrose and lignocellulosic biomass as carbon sinks. These include sugar transport and localization and the engineering of novel sugar sinks. This classic example of a possible dual-purpose crop can also be improved through breeding and genetic engineering of cell wall properties to further optimize biofuel production. Slavov et al. (2013) review the current knowledge about cell wall genetics, chemistry and structure in Miscanthus. This includes the prospects of developing detailed molecular genetic and biochemical models of pathways relevant to biomass conversion efficiency. The life history and genome complexities exhibited by the Miscanthus species in question dictate that genome wide association studies are a necessary approach toward the genetic dissection of these traits. Potential targets for biomass improvement include cell wall regulatory genes, intercellular trafficking, and microtubule organization. Opportunities exist to functionally test gene-trait associations for cell wall quality in this bioenergy crop, short-term progress toward understanding of the molecular underpinnings of cell wall quality traits in Miscanthus will be driven by research in model grasses. Setaria viridis is a rapid cycling C4 panicoid grass with several attributes that make it an excellent model for bioenergy grasses. Petti et al. (2013) describe the composition and saccharification dynamics of S. viridis aboveground biomass as similar to sorghum, maize, and switchgrass, confirming its potential as model species for panicoid translational genomics. Another grass proposed as a model for energy grasses, forage grasses and cereals is Brachypodium distachyon. Rancour et al. (2012) present chemical composition data of cell walls from distinct organs and developmental stages. Results indicate similar cell wall composition to those previously determined for a diverse set of C3 forage grasses and cereals, highlighting the usefulness of B. distachyon as a model for temperate grasses. As with S. virdis, the authors report some differences for particular wall traits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable...

متن کامل

Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.

Lignocellulosic biomass is a plentiful and renewable resource for fuels and chemicals. Despite this potential, nearly all renewable fuels and chemicals are now produced from edible resources, such as starch, sugars, and oils; the challenges imposed by notoriously recalcitrant and heterogeneous lignocellulosic feedstocks have made their production from nonfood biomass inefficient and uneconomica...

متن کامل

Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks.

The successful commercialization of bioenergy grasses as lignocellulosic feedstocks requires that they be produced, processed, and transported efficiently. Intensive breeding for higher yields in food crops has resulted in varieties that perform optimally under high-density planting but often with high input costs. This is particularly true of maize, where most yield gains in the past have come...

متن کامل

A mini review on renewable sources for biofuel.

Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified a...

متن کامل

Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply.

Commercial-scale bio-refineries are designed to process 2000tons/day of single lignocellulosic biomass. Several geographical areas in the United States generate diverse feedstocks that, when combined, can be substantial for bio-based manufacturing. Blending multiple feedstocks is a strategy being investigated to expand bio-based manufacturing outside Corn Belt. In this study, we developed a mod...

متن کامل

Surface properties correlate to the digestibility of hydrothermally pretreated lignocellulosic Poaceae biomass feedstocks

BACKGROUND Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013